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Abstract

The paper concerns the free axisymmetric vibration of an annular plate with concentric circular elastic supports. The

formulation of the problem concerns plates with free outer and inner edges and with an arbitrary number of circular

supports. The exact solution is obtained by applying the Green’s function method. The Green’s function corresponding to

the free annular plate is determined in an analytical form. Numerical examples are presented.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Annular plates are used as components in various mechanical and structural constructions. The vibrational
characteristics of plates with internal supports are of practical interest in civil and aerospace engineering. The
analysis of free vibrations of annular plates with concentric circular supports is the subject, among others, of
papers [1–4]. In Refs. [1–3] the solution to the vibration problem was obtained by using the Rayleigh–Ritz
method. The results presented in paper [1] concern the free vibration of plates with different combinations of
outer and inner support conditions. The authors of the paper [2] deal with the vibration of a free plate with
two intermediate concentric supports. In Ref. [3] a variant of the Rayleigh–Ritz method was used to solve the
free vibration problem of annular plates with concentric supports. The numerically obtained values of the
frequency parameter are presented. Paper [4] is devoted to vibration analysis of annular and circular plates by
an axisymmetric finite-element method.

This paper presents the solution to the problem of free axisymmetric vibration of annular plates with
concentric elastic supports using the Green’s function method. The Green’s function corresponding to a free
annular plate is determined by solving an auxiliary problem. The exact solution to the vibration problem is
obtained for annular plates with an arbitrary number of concentric supports.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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2. Theory

Consider an annular plate with uniform thickness (Fig. 1). The axisymmetric vibration of the plate is
governed by the differential equation:
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where w is the transverse displacement of the plate, r is the radial variable, t is the time variable, D is the bending
rigidity of the plate, r̄ is the mass per unit volume, q is the load per unit area and h is the plate thickness. For a
plate with elastic concentric supports with radii rj (j ¼ 1, 2,y, n), the function q takes the form:

qðr; tÞ ¼ �
Xn

j¼1

kjwðr; tÞ
1

r
dðr� rjÞ, (2)

where d is the Dirac delta function and kj’s are the stiffness coefficients of the supports.
In case of free vibration one assumes: wðr; tÞ ¼ w̄ðrÞ eiot. Introducing simultaneously the non-dimensional

variables: r̄ ¼ r=a, r̄j ¼ rj=a, W ¼ w̄=a and quantities: O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða4r̄ho2Þ=D4

p
, Kj ¼ a2kj=D, where a is the radius

of the outer edge of the plate, Eq. (1) can be rewritten in the form (the dashes over r are omitted):
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Eq. (3) is completed by boundary conditions corresponding to the free annular plate. The conditions at the
inner (r ¼ b, where b ¼ b=a) and outer ðr ¼ 1Þ edges are:
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where n is the Poisson ratio.
The solution to the problem is obtained by using the Green’s function method. The Green’s function Gðr; rÞ

corresponding to the free annular plate is a solution to the equation
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and satisfies, with respect to variable r, the boundary conditions (4) and (5). This function may be written in
the form

G r;rð Þ ¼ G0 r;rð Þ þ G1 r; rð ÞH r� rð Þ, (7)

where G0ðr; rÞ is a general solution to the homogeneous equation obtained from Eq. (6) and G1ðr; rÞHðr� rÞ
is a particular solution to Eq. (6). It may be proved that the function G1ðr;rÞ is a solution to the homogenous
version of Eq. (6) which satisfies the following conditions:
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The general solution to the homogeneous Eq. (6) has the form

G1ðr; rÞ ¼ c1J0ðrOÞ þ c2I0ðrOÞ þ c3Y 0ðrOÞ þ c4K0ðrOÞ. (9)

The constants c1–c4 are determined by using the conditions (8). After transformations, the function G1ðr;rÞ
can be written in the form

G1ðr;rÞ ¼
1

2O2
I0ðrOÞK0ðrOÞ � I0ðrOÞK0ðrOÞ þ

p
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Function G0, as a solution to the homogeneous version of Eq. (6), can also be presented in the form:

G0ðr;rÞ ¼ C1J0ðrOÞ þ C2I0ðrOÞ þ C3Y 0ðrOÞ þ C4K0ðrOÞ. (11)

The constants C1–C4 are determined by taking into account Eqs. (10) and (11) into Eq. (7) and by using
boundary conditions (4) and (5). In order to present function G0 in a simple form, the following functions are
introduced:

F1ðzÞ ¼ z J0ðzÞI1ðzÞ þ J1ðzÞI0ðzÞð Þ � 2ð1� nÞJ1ðzÞI1ðzÞ,

F2ðzÞ ¼ �z J0ðzÞK1ðzÞ � J1ðzÞK0ðzÞð Þ þ 2ð1� nÞJ1ðzÞK1ðzÞ,

F3ðzÞ ¼ z Y 0ðzÞI1ðzÞ þ Y 1ðzÞI0ðzÞð Þ � 2ð1� nÞY 1ðzÞI1ðzÞ,

F4ðzÞ ¼ �z Y 0ðzÞK1ðzÞ � Y 1ðzÞK0ðzÞð Þ þ 2ð1� nÞY 1ðzÞK1ðzÞ,

C1ðu; zÞ ¼ � J0ðzOÞ þ K0ðzOÞF1ðuOÞ � I0ðzOÞF2ðuOÞð Þ,

C2ðu; zÞ ¼ � Y 0ðzOÞ þ K0ðzOÞF3ðuOÞ � I0ðzOÞF4ðuOÞð Þ,

C3ðu; zÞ ¼ I0ðzOÞ þ
p
2

Y 0ðzOÞF1ðuOÞ � J0ðzOÞF3ðuOÞð Þ,
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Finally, function G0 can be written as follows:
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After using the properties of the Green’s function Gðr; rÞ, the solution to boundary problem (3)–(5) can be
presented in the following form:

W ðrÞ ¼ �
Xn

j¼1

KjW ðrjÞGðr; rjÞ. (13)

Substituting r ¼ rj, j ¼ 1; 2; . . . ; n into Eq. (13), a set of n equations is obtained. The system of the equations
can be written in a matrix form

AW ¼ 0, (14)

where A ¼ ½aij �1pi;jpn, W ¼ ½W ðr1Þ . . .W ðrnÞ�
T and aij ¼ KiGðri; rjÞ þ dij, where dij is the Kronecker delta.

A nontrivial solution of Eq. (14) exists if and only if

det A ¼ 0, (15)

This equation is a frequency equation of the vibration problem under consideration. The frequency
equation is then solved numerically with respect to the frequency parameter O.

3. Numerical examples

In the case of annular plate with two elastic concentric supports ðn ¼ 2Þ Eq. (15) takes the form

G r1; r1ð Þ þ
1

K1

� �
G r2; r2ð Þ þ

1

K2

� �
� G r1; r2ð ÞG r2; r1ð Þ ¼ 0. (16)
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If K1!1 and/or K2!1 in Eq. (16), then the frequency equation of the annular plate simply supported
at r ¼ r1 and/or r ¼ r2 is obtained. For example, the frequency equation for the annular plate simply
supported at the outer edge ðr2 ¼ 1Þ and along an intermediate circle (r ¼ r1, where bpr1o1), can be written
in the form

G 1; 1ð ÞG r1; r1ð Þ � G 1; r1ð Þð Þ
2
¼ 0. (17)

The first three values of frequency parameters, Oi (i ¼ 1, 2, 3), obtained as a numerical solution to Eq. (17)
for various values of ratio b ¼ b=a, and various radii of the circular support ðbpr1o1Þ, are presented in
Table 1. The fundamental frequency parameters O1, obtained by using the present method are compared with
Table 1

Frequency parameter values for annular plates free at the inner edge, simply supported at the outer edge and along the intermediate circle

with radius r1 for various values of r1 and ratio b ¼ b=a

b ¼ b=a r1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 4.2708 4.7897 5.3246 5.2594 4.6568 4.1343 3.7342 3.4270

3.8059 4.2708 4.7897 5.3246 5.2594 4.6568 4.1343 3.7342 3.4270

7.1960 8.0741 8.6300 7.4238 7.2764 8.3803 8.3234 7.4716 6.7894

10.6296 11.8250 10.5877 11.0828 11.8055 10.3900 11.4374 11.4298 10.3251

0.2 4.6938 5.3407 5.5430 4.8880 4.2748 3.8217 3.4842

4.0963 4.6938 5.3407 5.5430 4.8880 4.2748 3.8217 3.4842

7.9606 9.0152 8.5808 7.5974 8.6079 9.0703 8.0102 7.1608

11.8575 13.0443 11.4576 12.9066 11.7136 11.8222 12.6976 11.2797

0.3 5.3540 6.0550 5.5765 4.7241 4.1187 3.6925

4.5912 5.3540 6.0550 5.5765 4.7241 4.1188 3.6925

9.0408 10.3056 8.8403 8.9394 10.3667 9.1616 7.9879

13.5104 14.3676 13.4294 14.4354 12.5928 14.7072 12.8930

0.4 6.3228 6.8126 5.6438 4.7134 4.1068

5.3031 6.3228 6.8126 5.6438 4.7134 4.1068

10.5147 11.9564 9.7886 11.3765 11.0464 9.3118

15.7385 15.7573 16.4584 15.0911 16.7947 15.2644

0.5 7.7639 7.4200 5.7994 4.8242

6.3280 7.7639 7.4200 5.7994 4.8242

12.5953 13.7848 12.1058 14.0360 11.3771

18.8702 17.9966 20.4560 18.0667 18.8464

0.6 9.9608 7.9330 6.0802

7.8838 9.9608 7.9330 6.0802

15.7275 15.6278 17.0405 14.8327

23.5759 22.7524 22.3806 24.6966

0.7 12.8767 8.5636

10.4911 12.8767 8.5636

20.9566 19.3748 21.5711

31.4249 32.9117 33.5256

0.8 15.3466

15.7191 15.3466

31.4233 34.0955

47.1292 44.5148

0.9 31.4209

62.8351

94.2501

Frequency parameters in the table written in italic are square roots of the given in Ref. [2].
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the results given in Ref. [2]. The frequencies O1 for r1 ¼ b, relate to the annular plates with both edges simply
supported. All numerical calculations presented here have been performed for the Poisson ratio n ¼ 0:3.

Assuming K2!1 in Eq. (16), the frequency equation for an annular plate free inside and simply
supported outside with intermediate elastic support is obtained. The first two frequency parameter values, Oi

(i ¼ 1, 2), as functions of the intermediate support location x ¼ ðr1 � bÞ=ð1� bÞ, were calculated using this
equation. The results for various values of the stiffness coefficient K1 and for b ¼ 0.2, 0.4, 0.6 and 0.8, are
presented in Figs. 2–5. All O1ðxÞ functions assume one local maximum and all O2ðxÞ functions assume two
a
b

r2

r1

K1K2

Fig. 1. Annular plate with free edges and two concentric circular supports.
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Fig. 2. Frequency parameter values On for the first two modes of axisymmetric vibration of annular plates simply supported at the outer

edge, free at the inner edge and with an intermediate circular elastic support as functions of the ratio x ¼ ðr1 � bÞ=ð1� bÞ for b ¼ b=a ¼

0:2 and various values of the stiffness coefficient of the support: (________) K1 ¼ 1, (-——) K1 ¼ 100, (-—) K1 ¼ 1000, (- -—) K1 ¼ 5000,

(- - -—) K1 ¼ 10 000, (- - -) K1 ¼ 50 000, (———) K1 ¼ 1.
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Fig. 3. As Fig. 2, but for b ¼ 0:4.
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Fig. 4. As Fig. 2, but for b ¼ 0:6.

S. Kukla, M. Szewczyk / Journal of Sound and Vibration 300 (2007) 387–393392
local maximum in interval (0, 1), independent of the values of the stiffness coefficient K1 and ratio b/a. The
maximum values of the dimensionless frequencies are greatest for the greatest values of the ratio b/a. The
eigenfrequencies increase when the stiffness of the supporting rings increases. The courses of the curves in
Figs. 2–4 also show that for some values of stiffness coefficient K1, the eigenfrequencies Oi can be the same as
for the plates with various supporting rings. From the numerical investigations it follows that the stiffness
coefficients K1, as well as the radius of the supporting ring r1, have a significant effect on the free vibration
frequencies of the annular plate. The effect is observed for annular plates with various values of the ratio
b ¼ b=a.

4. Conclusions

An exact solution to the problem of free axisymmetric vibration of annular plates with elastic or rigid
intermediate circular supports has been presented. The frequency equation for the axisymmetric vibrations of
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Fig. 5. As Fig. 2, but for b ¼ 0:8.
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the plate was obtained with the application of the Green’s function method. The Green’s function
corresponding to the free annular plate was determined. Although the presented numerical results concern a
free plate with two rigid or elastic supports, the solution includes the free vibrations of annular plates with an
arbitrary number of supports. An analogous approach can be made for the vibration problems of annular
plates with one or two clamped edges.
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